Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Life Sci Technol ; 6(1): 1-14, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38433969

RESUMO

The electric catfish (Malapterurus electricus), belonging to the family Malapteruridae, order Siluriformes (Actinopterygii: Ostariophysi), is one of the six branches that has independently evolved electrical organs. We assembled a 796.75 Mb M. electricus genome and anchored 88.72% sequences into 28 chromosomes. Gene family analysis revealed 295 expanded gene families that were enriched on functions related to glutamate receptors. Convergent evolutionary analyses of electric organs among different lineage of electric fishes further revealed that the coding gene of rho guanine nucleotide exchange factor 4-like (arhgef4), which is associated with G-protein coupled receptor (GPCR) signaling pathway, underwent adaptive parallel evolution. Gene identification suggests visual degradation in catfishes, and an important role for taste in environmental adaptation. Our findings fill in the genomic data for a branch of electric fish and provide a relevant genetic basis for the adaptive evolution of Siluriformes. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-023-00197-8.

2.
Nat Ecol Evol ; 8(4): 686-694, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38383849

RESUMO

Populations and species are threatened by human pressure, but their fate is variable. Some depleted populations, such as that of the northern elephant seal (Mirounga angustirostris), recover rapidly even when the surviving population was small. The northern elephant seal was hunted extensively and taken by collectors between the early 1800s and 1892, suffering an extreme population bottleneck as a consequence. Recovery was rapid and now there are over 200,000 individuals. We sequenced 260 modern and 8 historical northern elephant seal nuclear genomes to assess the impact of the population bottleneck on individual northern elephant seals and to better understand their recovery. Here we show that inbreeding, an increase in the frequency of alleles compromised by lost function, and allele frequency distortion, reduced the fitness of breeding males and females, as well as the performance of adult females on foraging migrations. We provide a detailed investigation of the impact of a severe bottleneck on fitness at the genomic level and report on the role of specific gene systems.


Assuntos
Genômica , Focas Verdadeiras , Masculino , Feminino , Humanos , Animais , Sequência de Bases , Focas Verdadeiras/genética
3.
Microbiome ; 11(1): 253, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974296

RESUMO

BACKGROUND: The within-species diversity of symbiotic bacteria represents an important genetic resource for their environmental adaptation, especially for horizontally transmitted endosymbionts. Although strain-level intraspecies variation has recently been detected in many deep-sea endosymbionts, their ecological role in environmental adaptation, their genome evolution pattern under heterogeneous geochemical environments, and the underlying molecular forces remain unclear. RESULTS: Here, we conducted a fine-scale metagenomic analysis of the deep-sea mussel Gigantidas platifrons bacterial endosymbiont collected from distinct habitats: hydrothermal vent and methane seep. Endosymbiont genomes were assembled using a pipeline that distinguishes within-species variation and revealed highly heterogeneous compositions in mussels from different habitats. Phylogenetic analysis separated the assemblies into three distinct environment-linked clades. Their functional differentiation follows a mosaic evolutionary pattern. Core genes, essential for central metabolic function and symbiosis, were conserved across all clades. Clade-specific genes associated with heavy metal resistance, pH homeostasis, and nitrate utilization exhibited signals of accelerated evolution. Notably, transposable elements and plasmids contributed to the genetic reshuffling of the symbiont genomes and likely accelerated adaptive evolution through pseudogenization and the introduction of new genes. CONCLUSIONS: The current study uncovers the environment-driven evolution of deep-sea symbionts mediated by mobile genetic elements. Its findings highlight a potentially common and critical role of within-species diversity in animal-microbiome symbioses. Video Abstract.


Assuntos
Fontes Hidrotermais , Mytilidae , Animais , Filogenia , Mytilidae/genética , Mytilidae/microbiologia , Bactérias , Ecossistema , Metano/metabolismo , Simbiose
4.
Nat Commun ; 14(1): 5630, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37699889

RESUMO

The six species of lungfish possess both lungs and gills and are the closest extant relatives of tetrapods. Here, we report a single-cell transcriptome atlas of the West African lungfish (Protopterus annectens). This species manifests the most extreme form of terrestrialization, a life history strategy to survive dry periods that can last for years, characterized by dormancy and reversible adaptive changes of the gills and lungs. Our atlas highlights the cell type diversity of the West African lungfish, including gene expression consistent with phenotype changes of terrestrialization. Comparison with terrestrial tetrapods and ray-finned fishes reveals broad homology between the swim bladder and lung cell types as well as shared and idiosyncratic changes of the external gills of the West African lungfish and the internal gills of Atlantic salmon. The single-cell atlas presented here provides a valuable resource for further exploration of the respiratory system evolution in vertebrates and the diversity of lungfish terrestrialization.


Assuntos
Ascomicetos , Salmo salar , Animais , Aclimatação , Sistema Respiratório , Brânquias , Sacos Aéreos
5.
DNA Res ; 30(5)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37590994

RESUMO

Chaetodontidae, known as butterflyfishes, are typical fish in coral ecosystems, exhibiting remarkable interspecific differences including body colour patterns and feeding ecology. In this study, we report genomes of three butterflyfish species (Chelmon rostratus, Chaetodon trifasciatus and Chaetodon auriga) and a closely related species from the Pomacanthidae family, Centropyge bicolour, with an average genome size of 65,611 Mb. Chelmon rostratus, comprising 24 chromosomes assembled to the chromosome level, could be served as a reference genome for butterflyfish. By conducting a collinearity analysis between butterflyfishes and several fishes, we elucidated the specific and conserved genomic features of butterflyfish, with particular emphasis on novel genes arising from tandem duplications and their potential functions. In addition to the two melanocyte-specific tyr genes commonly found in fish, we found the gene tyrp3, a new tyrosinase-related proteins gene in the reef fish, including butterflyfish and clownfish, implicating their involvement in the pigmentation diversity of fish. Additionally, we observed a tandem duplication expansion of three copies of nell1 gene in C. rostratus genome, which likely contribute to its unique jaw development and distinctive morphology of its sharp mouth. These results provided valuable genomic resources for further investigations into the genetic diversity and evolutionary adaptations of reef fish.


Assuntos
Ecossistema , Genômica , Animais , Cor , Tamanho do Genoma , Cromossomos
6.
EMBO J ; 42(17): e112740, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37427458

RESUMO

Lifespan varies significantly among mammals, with more than 100-fold difference between the shortest and longest living species. This natural difference may uncover the evolutionary forces and molecular features that define longevity. To understand the relationship between gene expression variation and longevity, we conducted a comparative transcriptomics analysis of liver, kidney, and brain tissues of 103 mammalian species. We found that few genes exhibit common expression patterns with longevity in the three organs analyzed. However, pathways related to translation fidelity, such as nonsense-mediated decay and eukaryotic translation elongation, correlated with longevity across mammals. Analyses of selection pressure found that selection intensity related to the direction of longevity-correlated genes is inconsistent across organs. Furthermore, expression of methionine restriction-related genes correlated with longevity and was under strong selection in long-lived mammals, suggesting that a common strategy is utilized by natural selection and artificial intervention to control lifespan. Our results indicate that lifespan regulation via gene expression is driven through polygenic and indirect natural selection.


Assuntos
Longevidade , Mamíferos , Animais , Mamíferos/classificação , Mamíferos/genética , Mamíferos/crescimento & desenvolvimento , Mamíferos/metabolismo , Longevidade/genética , Perfilação da Expressão Gênica , Expressão Gênica , Fígado/metabolismo , Encéfalo/metabolismo , Rim/metabolismo , Humanos , Masculino , Feminino
7.
Prostate Cancer Prostatic Dis ; 26(3): 614-624, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37264224

RESUMO

BACKGROUND: Prostate cancer is a broad-spectrum disease, spanning from indolent to a highly aggressive lethal malignancy. Prostate cancer cell lines are essential tools to understanding the basic features of this malignancy, as well as in identifying novel therapeutic strategies. However, most cell lines routinely used in prostate cancer research are derived from metastatic disease and may not fully elucidate the molecular events underlying the early stages of cancer development and progression. Thus, there is a need for new cell lines derived from localised disease to better span the disease spectrum. METHODS: Prostatic tissue from the primary site, and adjacent non-cancerous tissue was obtained from four patients with localised disease undergoing radical prostatectomy. Epithelial cell outgrowths were immortalised with human papillomavirus type 16 (HPV16) E6 and E7 to establish monoclonal cell lines. Chromosomal ploidy was imaged and STR profiles were determined. Cell morphology, colony formation and cell proliferation characteristics were assessed. Androgen receptor (AR) expression and AR-responsiveness to androgen treatment were analysed by immunofluorescence and RT-qPCR, respectively. RNA-seq analysis was performed to identify prostate lineage markers and expression of prostate cancer tumorigenesis-related genes. RESULTS: Two benign cell lines derived from non-cancer cells (AQ0420 and AQ0396) and two tumour tissue derived cancer cell lines (AQ0411 and AQ0415) were immortalised from four patients with localised prostatic adenocarcinoma. The cell lines presented an epithelial morphology and a slow to moderate proliferative rate. None of the cell lines formed anchorage independent colonies or displayed AR-responsiveness. Comparative RNA-seq expression analysis confirmed the prostatic lineage of the four cell lines, with a distinct gene expression profile from that of the metastatic prostate cancer cell lines, PC-3 and LNCaP. CONCLUSIONS: Comprehensive characterization of these cell lines may provide new in vitro tools that could bridge the current knowledge gap between benign, early-stage and metastatic disease.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/patologia , Próstata/patologia , Linhagem Celular , Antígeno Prostático Específico/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/análise , Androgênios/metabolismo , Linhagem Celular Tumoral
8.
Cell ; 186(6): 1279-1294.e19, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36868220

RESUMO

Antarctic krill (Euphausia superba) is Earth's most abundant wild animal, and its enormous biomass is vital to the Southern Ocean ecosystem. Here, we report a 48.01-Gb chromosome-level Antarctic krill genome, whose large genome size appears to have resulted from inter-genic transposable element expansions. Our assembly reveals the molecular architecture of the Antarctic krill circadian clock and uncovers expanded gene families associated with molting and energy metabolism, providing insights into adaptations to the cold and highly seasonal Antarctic environment. Population-level genome re-sequencing from four geographical sites around the Antarctic continent reveals no clear population structure but highlights natural selection associated with environmental variables. An apparent drastic reduction in krill population size 10 mya and a subsequent rebound 100 thousand years ago coincides with climate change events. Our findings uncover the genomic basis of Antarctic krill adaptations to the Southern Ocean and provide valuable resources for future Antarctic research.


Assuntos
Euphausiacea , Genoma , Animais , Relógios Circadianos/genética , Ecossistema , Euphausiacea/genética , Euphausiacea/fisiologia , Genômica , Análise de Sequência de DNA , Elementos de DNA Transponíveis , Evolução Biológica , Adaptação Fisiológica
9.
BMC Biol ; 21(1): 51, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36882766

RESUMO

BACKGROUND: Bivalves have independently evolved a variety of symbiotic relationships with chemosynthetic bacteria. These relationships range from endo- to extracellular interactions, making them ideal for studies on symbiosis-related evolution. It is still unclear whether there are universal patterns to symbiosis across bivalves. Here, we investigate the hologenome of an extracellular symbiotic thyasirid clam that represents the early stages of symbiosis evolution. RESULTS: We present a hologenome of Conchocele bisecta (Bivalvia: Thyasiridae) collected from deep-sea hydrothermal vents with extracellular symbionts, along with related ultrastructural evidence and expression data. Based on ultrastructural and sequencing evidence, only one dominant Thioglobaceae bacteria was densely aggregated in the large bacterial chambers of C. bisecta, and the bacterial genome shows nutritional complementarity and immune interactions with the host. Overall, gene family expansions may contribute to the symbiosis-related phenotypic variations in different bivalves. For instance, convergent expansions of gaseous substrate transport families in the endosymbiotic bivalves are absent in C. bisecta. Compared to endosymbiotic relatives, the thyasirid genome exhibits large-scale expansion in phagocytosis, which may facilitate symbiont digestion and account for extracellular symbiotic phenotypes. We also reveal that distinct immune system evolution, including expansion in lipopolysaccharide scavenging and contraction of IAP (inhibitor of apoptosis protein), may contribute to the different manners of bacterial virulence resistance in C. bisecta. CONCLUSIONS: Thus, bivalves employ different pathways to adapt to the long-term co-existence with their bacterial symbionts, further highlighting the contribution of stochastic evolution to the independent gain of a symbiotic lifestyle in the lineage.


Assuntos
Bivalves , Animais , Bivalves/genética , Transporte Biológico , Genoma Bacteriano , Proteínas Inibidoras de Apoptose , Lipopolissacarídeos
10.
Mol Ecol Resour ; 23(5): 1108-1123, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36826393

RESUMO

Cetaceans (dolphins, whales, and porpoises) have large and anatomically sophisticated brains. To expand our understanding of the cellular makeup of cetacean brains and the similarities and divergence between the brains of cetaceans and terrestrial mammals, we report a short-finned pilot whale (Globicephala macrorhynchus) single-nucleus transcriptome atlas. To achieve this goal, we assembled a chromosome-scale reference genome spanning 2.25 Gb on 22 chromosomes and profiled the gene expression of five major anatomical cortical regions of the short-finned pilot whale by single-nucleus RNA-sequencing (snRNA-seq). We identified six major cell lineages in the cerebral cortex (excitatory neurons, inhibitory neurons, oligodendrocytes, oligodendrocyte precursor cells, astrocytes, and endothelial cells), eight molecularly distinct subclusters of excitatory neurons, and four subclusters of inhibitory neurons. Finally, a comparison of snRNA-seq data from the short-finned pilot whale, human, and rhesus macaque revealed a broadly conserved cellular makeup of brain cell types. Our study provides genomic resources and molecular insights into cetacean brain evolution.


Assuntos
Golfinhos , Baleia Comum , Baleias Piloto , Animais , Humanos , Baleias Piloto/genética , Células Endoteliais , Macaca mulatta , Transcriptoma , Baleias/genética , Baleias/metabolismo , Golfinhos/genética , Córtex Cerebral
11.
BMC Biol ; 20(1): 289, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36575497

RESUMO

BACKGROUND: Coleoid cephalopods have distinctive neural and morphological characteristics compared to other invertebrates. Early studies reported massive genomic rearrangements occurred before the split of octopus and squid lineages (Proc Natl Acad Sci U S A 116:3030-5, 2019), which might be related to the neural innovations of their brain, yet the details remain elusive. Here we combine genomic and single-nucleus transcriptome analyses to investigate the octopod chromosome evolution and cerebral characteristics. RESULTS: We present a chromosome-level genome assembly of a gold-ringed octopus, Amphioctopus fangsiao, and a single-nucleus transcriptome of its supra-esophageal brain. Chromosome-level synteny analyses estimate that the chromosomes of the ancestral octopods experienced multiple chromosome fission/fusion and loss/gain events by comparing with the nautilus genome as outgroup, and that a conserved genome organization was detected during the evolutionary process from the last common octopod ancestor to their descendants. Besides, protocadherin, GPCR, and C2H2 ZNF genes are thought to be highly related to the neural innovations in cephalopods (Nature 524:220-4, 2015), and the chromosome analyses pinpointed several collinear modes of these genes on the octopod chromosomes, such as the collinearity between PCDH and C2H2 ZNF, as well as between GPCR and C2H2 ZNF. Phylogenetic analyses show that the expansion of the octopod protocadherin genes is driven by a tandem-duplication mechanism on one single chromosome, including two separate expansions at 65 million years ago (Ma) and 8-14 Ma, respectively. Furthermore, we identify eight cell types (i.e., cholinergic and glutamatergic neurons) in the supra-esophageal brain of A. fangsiao, and the single-cell expression analyses reveal the co-expression of protocadherin and GPCR in specific neural cells, which may contribute to the neural development and signal transductions in the octopod brain. CONCLUSIONS: The octopod genome analyses reveal the dynamic evolutionary history of octopod chromosomes and neural-related gene families. The single-nucleus transcriptomes of the supra-esophageal brain indicate their cellular heterogeneities and functional interactions with other tissues (i.e., gill), which provides a foundation for further octopod cerebral studies.


Assuntos
Octopodiformes , Animais , Octopodiformes/genética , Transcriptoma , Filogenia , Protocaderinas , Evolução Molecular , Cariótipo
12.
J Adv Res ; 42: 237-248, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36513415

RESUMO

INTRODUCTION: Cultivated peanut (Arachis hypogaea L.) is an important oil crop for human nutrition and is cultivated in >100 countries. However, the present knowledge of its genomic diversity, evolution, and loci related to the seed traits is limited. OBJECTIVES: Our study intended to (1) uncover the population structure and the demographic history of peanuts, (2) identify signatures of selection that occurred during peanut improvement breeding, and (3) detect and verify the functions of candidate genes associated with seed traits. METHODS: We explored the population relationship and the evolution of peanuts using a largescale single nucleotide polymorphism dataset generated from the genome-wide resequencing of 203 cultivated peanuts. Genetic diversity and genomic scan analyses were applied to identify selective loci for genomic-selection breeding. Genome-wide association studies, transgenic experiments, and RNA-seq were employed to identify the candidate genes associated with seed traits. RESULTS: Our study revealed that the 203 resequenced accessions were divided into four genetic groups, consistent with their botanical classification. Moreover, the var. peruviana and var. fastigiata subpopulations have diverged to a greater extent than the others, and var. peruviana may be the earliest variant in the evolution from tetraploid ancestors. A recent dramatic expansion in the effective population size of the cultivated peanuts ca. 300-500 years ago was also noted. Selective sweeps underlying quantitative trait loci and genes of seed size, plant architecture, and disease resistance coincide with the major goals of improved peanut breeding compared with the landrace and cultivar populations. Genome-wide association testing with functional analysis led to the identification of two genes involved in seed weight and seed length regulation. CONCLUSION: Our study provides valuable information for understanding the genomic diversity and the evolution of peanuts and serves as a genomic basis for improving peanut cultivars.


Assuntos
Arachis , Estudo de Associação Genômica Ampla , Arachis/genética , Mapeamento Cromossômico , Genoma de Planta , Genômica , Melhoramento Vegetal , Sementes/genética
15.
Zool Res ; 43(2): 241-254, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35194983

RESUMO

Many mammals risk damage from oxidative stress stemming from frequent dives (i.e., cycles of ischemia/reperfusion and hypoxia/reoxygenation), high altitude and subterranean environments, or powered flight. Purine metabolism is an essential response to oxidative stress, and an imbalance between purine salvage and de novo biosynthesis pathways can generate damaging reactive oxygen species (ROS). Here, we examined the evolution of 117 purine metabolism-related genes to explore the accompanying molecular mechanisms of enhanced purine metabolism in mammals under high oxidative stress. We found that positively selected genes, convergent changes, and nonparallel amino acid substitutions are possibly associated with adaptation to oxidative stress in mammals. In particular, the evolution of convergent genes with cAMP and cGMP regulation roles may protect mammals from oxidative damage. Additionally, 32 genes were identified as under positive selection in cetaceans, including key purine salvage enzymes (i.e., HPRT1), suggesting improved re-utilization of non-recyclable purines avoid hypoxanthine accumulation and reduce oxidative stress. Most intriguingly, we found that six unique substitutions in cetacean xanthine dehydrogenase (XDH), an enzyme that regulates the generation of the ROS precursor xanthine oxidase (XO) during ischemic/hypoxic conditions, show enhanced enzyme activity and thermal stability and diminished XO conversion activity. These functional adaptations are likely beneficial for cetaceans by reducing radical oxygen species production during diving. In summary, our findings offer insights into the molecular and functional evolution of purine metabolism genes in mammalian oxidative stress adaptations.


Assuntos
Mamíferos , Estresse Oxidativo , Adaptação Fisiológica/genética , Animais , Purinas/metabolismo , Xantina Oxidase/metabolismo
16.
Mol Ecol Resour ; 22(2): 740-754, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34486812

RESUMO

The 15 species of small carnivorous marsupials that comprise the genus Antechinus exhibit semelparity, a rare life-history strategy in mammals where synchronized death occurs after one breeding season. Antechinus males, but not females, age rapidly (demonstrate organismal senescence) during the breeding season and show promise as new animal models of ageing. Some antechinus species are also threatened or endangered. Here, we report a chromosome-level genome of a male yellow-footed antechinus Antechinus flavipes. The genome assembly has a total length of 3.2 Gb with a contig N50 of 51.8 Mb and a scaffold N50 of 636.7 Mb. We anchored and oriented 99.7% of the assembly on seven pseudochromosomes and found that repetitive DNA sequences occupy 51.8% of the genome. Draft genome assemblies of three related species in the subfamily Phascogalinae, two additional antechinus species (Antechinus argentus and A. arktos) and the iteroparous sister species Murexia melanurus, were also generated. Preliminary demographic analysis supports the hypothesis that climate change during the Pleistocene isolated species in Phascogalinae and shaped their population size. A transcriptomic profile across the A. flavipes breeding season allowed us to identify genes associated with aspects of the male die-off. The chromosome-level A. flavipes genome provides a steppingstone to understanding an enigmatic life-history strategy and a resource to assist the conservation of antechinuses.


Assuntos
Marsupiais , Animais , Austrália , Cromossomos , Masculino , Marsupiais/genética , Reprodução
17.
J Genet ; 1002021.
Artigo em Inglês | MEDLINE | ID: mdl-34787113

RESUMO

Marine mammals are exposed to the oxidative stress induced by hypoxia/reoxygenation cycles yet resist cellular damage. The availability of high-quality genomes promises to provide insights on how this is achieved. In this study, we considered the ubiquitinconjugating enzymes (E2) gene family, UBE2 genes, which encodes enzymes with critical roles in cellular physiology, including the oxidative stress response. The sperm whale was the first marine mammal with a chromosome-level genome, allowing the study of gene family repertories, phylogenetic relationships, chromosome gene organization, and other evolutionary patterns on a genomewide basis. Here, 39 UBE2 genes (similar to human, including 32 intact genes, one partial gene, six pseudogenes) were identified in sperm whale genome. These genes were found on 17 chromosomes and were assigned into 23 subfamilies, 16 subgroups, and four classes based on structural characteristics and functions, phylogeny and conserved domains, respectively. Although the gene structure and motif distribution of sperm whale UBE2 genes are conserved in each subfamily, motif variation and intron gain/loss may contribute to functional divergence. Segmental duplications were detected in six gene pairs, which could drive UBE2 gene innovation in the sperm whale. Contrasting seven cetaceans and five terrestrial taxa, we found that cetaceans have experienced shifts in selective constraint on UBE2 genes, which may contribute to oxidative stress tolerance during the adaptation to aquatic life. Our results provide the first comprehensive survey of cetacean UBE2 genes.


Assuntos
Cachalote/genética , Enzimas de Conjugação de Ubiquitina/genética , Motivos de Aminoácidos/genética , Animais , Mapeamento Cromossômico , Evolução Molecular , Duplicação Gênica , Genoma , Filogenia
18.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34503999

RESUMO

The ancestors of marine mammals once roamed the land and independently committed to an aquatic lifestyle. These macroevolutionary transitions have intrigued scientists for centuries. Here, we generated high-quality genome assemblies of 17 marine mammals (11 cetaceans and six pinnipeds), including eight assemblies at the chromosome level. Incorporating previously published data, we reconstructed the marine mammal phylogeny and population histories and identified numerous idiosyncratic and convergent genomic variations that possibly contributed to the transition from land to water in marine mammal lineages. Genes associated with the formation of blubber (NFIA), vascular development (SEMA3E), and heat production by brown adipose tissue (UCP1) had unique changes that may contribute to marine mammal thermoregulation. We also observed many lineage-specific changes in the marine mammals, including genes associated with deep diving and navigation. Our study advances understanding of the timing, pattern, and molecular changes associated with the evolution of mammalian lineages adapting to aquatic life.


Assuntos
Adaptação Fisiológica , Evolução Molecular , Genoma , Genômica , Mamíferos/fisiologia , Filogenia , Termogênese/genética , Animais , Fatores de Transcrição NFI/genética , Fatores de Transcrição NFI/metabolismo , Seleção Genética , Semaforinas/genética , Semaforinas/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
19.
Innovation (Camb) ; 2(2): 100108, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34557758

RESUMO

Extreme longevity has evolved multiple times during the evolution of mammals, yet its underlying molecular mechanisms remain largely underexplored. Here, we compared the evolution of 115 aging-related genes in 11 long-lived species and 25 mammals with non-increased lifespan (control group) in the hopes of better understanding the common molecular mechanisms behind longevity. We identified 16 unique positively selected genes and 23 rapidly evolving genes in long-lived species, which included nine genes involved in regulating lifespan through the insulin/IGF-1 signaling (IIS) pathway and 11 genes highly enriched in immune-response-related pathways, suggesting that the IIS pathway and immune response play a particularly important role in exceptional mammalian longevity. Interestingly, 11 genes related to cancer progression, including four positively selected genes and seven genes with convergent amino acid changes, were shared by two or more long-lived lineages, indicating that long-lived mammals might have evolved convergent or similar mechanisms of cancer resistance that extended their lifespan. This suggestion was further corroborated by our identification of 12 robust candidates for longevity-related genes closely related to cancer.

20.
Genome Biol Evol ; 13(8)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34247236

RESUMO

There are more than 100 species of American didelphid marsupials (opossums and mouse opossums). Limited genomic resources for didelphids exists, with only two publicly available genome assemblies compared with dozens in the case of their Australasian counterparts. This discrepancy impedes evolutionary and ecological research. To address this gap, we assembled a high-quality chromosome-level genome of the agile gracile mouse opossum (Gracilinanus agilis) using a combination of stLFR sequencing, polishing with mate-pair data, and anchoring onto pseudochromosomes using Hi-C. This species employs a rare life-history strategy, semelparity, and all G. agilis males and most females die at the end of their first breeding season after succumbing to stress and exhaustion. The 3.7-Gb chromosome-level assembly, with 92.6% anchored onto pseudochromosomes, has a scaffold N50 of 683.5 Mb and a contig N50 of 56.9 kb. The genome assembly shows high completeness, with a mammalian BUSCO score of 88.1%. Around 49.7% of the genome contains repetitive elements. Gene annotation yielded 24,425 genes, of which 83.9% were functionally annotated. The G. agilis genome is an important resource for future studies of marsupial biology, evolution, and conservation.


Assuntos
Cromossomos , Genoma , Gambás , Animais , Cromossomos/genética , Feminino , Genômica , Masculino , Anotação de Sequência Molecular , Gambás/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...